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Abstract

In this paper some fixed point principle is applied to prove, in a separable Banach
space, the existence of solutions for delayed second order differential inclusions with
three-point boundary conditions of the form

ü(t) ∈ F (t, u(t), u(h(t)), u̇(t)) + H(t, u(t), u(h(t)), u̇(t)) a.e. t ∈ [0, 1],

where F is a convex valued multifunction upper semi continuous on E ×E × E, H is
a lower semicontinuous multifunction and h is a bounded and continuous mapping on
[0, 1].
The existence of solutions is obtained under the assumptions that F(t, x, y, z) ⊂
Γ1(t), H(t, x, y, z) ⊂ Γ2(t), where the multifunctions Γ1, Γ2 : [0, 1] ⇉ E are uniformly-
Pettis integrable .
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1 Introduction

The present paper deals, in a separable Banach space E, with the existence of solutions
for the second order differential inclusion with delay of the form

(Pr)











ü(t) ∈ F (t, u(t), u(h(t)), u̇(t)) + H(t, u(t), u(h(t)), u̇(t)), a.e. t ∈ [0, 1];

u(t) = ϕ(t), ∀t ∈ [−r, 0];

u(0) = 0; u(θ) = u(1),

where r > 0 and θ is a given number in [0, 1[, F : [0, 1]×E ×E ×E ⇉ E, H : [0, 1]×E ×
E×E ⇉ E, h : [0, 1] → [−r, 1], t− r ≤ h(t) ≤ t, and ϕ : [−r, 0] → E. The given mappings
h and ϕ are continuous, F is a convex closed valued multifunction Lebesgue-measurable
on [0, 1] and upper semi-continuous on E ×E ×E and H is a closed valued multifunction
measurable and lower semi-continuous on E×E×E. Furthermore, F (t, x, y, z) ⊂ Γ1(t) and
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H(t, x, y, z) ⊂ Γ2(t) for all (t, x, y, z) ∈ [0, 1]×E×E×E where, for i = 1, 2, Γi : [0, 1] ⇉ E
is Pettis uniformly integrable.

A solution u of (Pr) is a mapping u : [−r, 1] → E satisfying ü(t) ∈ F (t, u(t), u(h(t)), u̇(t))+
H(t, u(t), u(h(t)), u̇(t)) for almost every t ∈ [0, 1], u(t) = ϕ(t) for all t ∈ [−r, 0] and
u(0) = 0; u(θ) = u(1), with u ∈ X := CE([−r, 1]) ∩ W

2,1
P,E([0, 1]) equipped with the norm

‖u‖X = max{ sup
t∈[−r,1]

‖u(t)‖, sup
t∈[0,1]

‖u̇(t)‖}.

Second order differential inclusions with three-point boundary conditions have been
studied by serval authors (see [1] [3], [5] and [14]). For example, the authors in [3] studied
the existence of solutions for a second order differential inclusion with three-point boundary
conditions of the form

ü(t) ∈ F (t, u(t), u̇(t)) + H(t, u(t), u̇(t)),

where F : [0, 1] × E × E ⇉ E is a convex compact valued multifunction, Lebesgue-
measurable on [0, 1] and upper semicontinuous on E×E and H a nonempty closed valued
multifunction, such that H is L([0, 1])⊗B(E)⊗B(E)-measurable and lower semicontinuous
on E × E, under the assumptions that F (t, x, y) ⊂ Γ1(t),H(t, x, y) ⊂ Γ2(t) in the case
where Γ1 and Γ2 are integrably bounded. The same differential inclusion has been studied
in [1] with the same conditions on F and H where Γ1, Γ2 are uniformly Pettis integrable.

The existence of solutions for second order delayed problems has also been discussed
in the literature, we cite for example the results given in [4], [7], [8], [9], [12], [14] and [16].

The paper is organized as follows. After we recall some basic notations and preliminary
theorems in section 3 we present our main result.

2 Notation and Preliminaries

Let (E, ‖ · ‖) be a separable Banach space and E′ is its topological dual, B(0, ρ) is the
closed ball of E of center 0 and radius ρ > 0 and BE is the closed unit ball of E; L([0, 1])
is the σ-algebra of Lebesgue-measurable sets on [0, 1]; λ = dt is the Lebesgue measure
on [0,1]; B(E) is the σ-algebra of Borel subsets of E. By L1

E([0, 1]) we denote the space
of all Lebesgue-Bochner integrable E-valued mappings defined on [0, 1]. We denote the
topology of uniform convergence on weakly compact convex sets by T w

co . Restricted to E′,
this is the Mackey topology, which is the strongest locally convex topology on E′ and we
denote it by T (E′, E).

Let CE([0, 1]) be the Banach space of all continuous mappings u : [0, 1] → E, endowed
with the sup-norm, and C1

E([0, 1]) be the Banach space of all continuous mappings u :
[0, 1] → E with continuous derivative, equipped with the norm

‖u‖C1 = max{max
t∈[0,1]

‖u(t)‖, max
t∈[0,1]

‖u̇(t)‖}.

Now, let f : [0, 1] → E be a scalarly integrable mapping, that is, for every x′ ∈
E′, the scalar function t 7→ 〈x′, f(t)〉 is Lebesgue-integrable on [0, 1], f is said to be
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Pettis integrable if, for every set A ∈ L([0, 1]), the weak integral
∫

A
f(t)dt defined by

〈x′,
∫

A
f(t)dt〉 =

∫

A
〈x′, f(t)〉dt for all x′ ∈ E′, belongs to E.

We denote by P1
E([0, 1]) the space of all Pettis-integrable E−valued mappings defined on

[0, 1]. The Pettis norm of any element f ∈ P1
E([0, 1]) is defined by

‖f‖Pe = sup
x′∈B

E′

∫

[0,1]
|〈x′, f(t)〉|dt.

The space P1
E([0, 1]) endowed with ‖.‖Pe is a normed space. A subset K ⊂ P1

E([0, 1]) is
Pettis uniformly integrable ((PUI) for short) if, for every ε > 0, there exists δ > 0 such
that for each measurable subset A of [0, 1] we have

λ(A) 6 δ ⇒ sup
f∈K

‖1Af‖Pe 6 ε.

If f ∈ P1
E([0, 1]), the singleton {f} is PUI since the set {〈x′, f〉 : ‖x′‖ 6 1} is uniformly

integrable.
For more details on the theory of the Pettis integration we can refer the reader to [6], [10],
[11] and [15].

A mapping v : [0, 1] → E is said to be scalarly derivable when there exists some
mapping v̇ : [0, 1] → E (called the weak derivative of v) such that, for every x′ ∈ E′,
the scalar function 〈x′, v(·)〉 is derivable and its derivative is equal to 〈x′, v̇(·)〉. The weak
derivative v̈ of v̇ when it exists is the weak second derivative.

By W
2,1
P,E([0, 1]) we denote the space of all continuous mappings u ∈ CE([0, 1]) such

that their first usual derivatives u̇ are continuous and their second weak derivatives belong
to P1

E([0, 1]).
For closed subsets A and B of E, the excess of A over B is defined by

e(A, B) = sup
a∈B

d(a,B) = sup
a∈A

( inf
b∈B

‖a − b‖),

and the support function δ∗(·, A) associated with A is defined on E′ by

δ∗(x′, A) = sup
a∈A

〈x′, a〉.

Recall also that a set K ⊂ P1
E([0, 1]) is said to be decomposable if and only if for every

u, v ∈ K and any A ∈ L([0, 1]) we have u.1A + v.(1 − 1A) ∈ K.

In the sequel, we need the following lemma that summarizes some properties of some
Green type function, see [1] and [3].

Lemma 2.1 Let E be a separable Banach space and let G : [0, 1] × [0, 1] → R be the
function defined by

G(t, s) =











−s if 0 ≤ s < t
−t if t < s ≤ θ

t (s−1)
(1−θ) if θ < s ≤ 1,

(2.1)
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if 0 ≤ t < θ, and

G(t, s) =











−s if 0 ≤ s < θ
θ(s−t)+s(t−1)

(1−θ) if θ ≤ s < t

t (s−1)
(1−θ) if t < s ≤ 1,

(2.2)

if θ ≤ t ≤ 1.
Then the following assumptions hold.
(i) G(., s) is derivable on [0, 1], for every s ∈ [0, 1] except on the diagonal, and its derivative
is given by

∂G

∂t
(t, s) =











0 if 0 ≤ s < t
−1 if t < s ≤ θ
(s−1)
(1−θ) if θ < s ≤ 1,

(2.3)

if 0 ≤ t < θ, and

∂G

∂t
(t, s) =











0 if 0 ≤ s < θ
(s−θ)
(1−θ) if θ ≤ s < t
(s−1)
(1−θ) if t < s ≤ 1,

(2.4)

if θ ≤ t ≤ 1.
(ii) G(., .) and ∂G

∂t
(., .) satisfies

sup
t,s∈[0,1]

|G(t, s)| ≤ 1, sup
t,s∈[0,1]

t6=s

|
∂G

∂t
(t, s)| ≤ 1. (2.5)

(iii) Let f ∈ P1
E([0, 1]) and let uf : [0, 1] → E be the mapping defined by

uf (t) =

∫ 1

0
G(t, s)f(s)ds ,∀t ∈ [0, 1], (2.6)

then one has
(1) uf (0) = 0 and uf (θ) = uf (1).
(2) The mapping t 7−→ uf (t) is continuous, i.e uf ∈ CE([0, 1]).
(3) The mapping uf is scalarly derivable, that is, for every x′ ∈ E′, the scalar function
〈x′, uf (.)〉 is derivable, and its weak derivative u̇f satisfies

lim
h→0

〈x′,
uf (t + h) − uf (t)

h
〉 = 〈x′, u̇f (t)〉

=

∫ 1

0

∂G

∂t
(t, s)〈x′, f(s)〉ds

= 〈x′,

∫ 1

0

∂G

∂t
(t, s)f(s)ds〉
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for all t ∈ [0, 1] and for all x′ ∈ E′ . Consequently

u̇f (t) =

∫ 1

0

∂G

∂t
(t, s)f(s)ds ,∀ t ∈ [0, 1], (2.7)

and u̇f is a continuous mapping from [0, 1] into E.
(4) The mapping u̇f is scalarly derivable, that is, there exists a mapping üf : [0, 1] → E
such tha, for every x′ ∈ E′, the scalar function 〈x′, u̇f (.)〉 is derivable with d

dt
〈x′, u̇f (t)〉 =

〈x′, üf (t)〉; furthermore
üf = f a.e. on [0, 1]. (2.8)

Let us mention a useful consequence of Lemma 2.1.

Proposition 2.1 Let E be a separable Banach space and let f : [0, 1] → E be a continuous
mapping (respectively a mapping in P1

E([0, 1])). Then the mapping

uf (t) =

∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1]

is the unique C2
E([0, 1])-solution (respectively W

2,1
P,E([0, 1])-solution) to the differential

equation
{

ü(t) = f(t) ∀t ∈ [0, 1];

u(0) = 0; u(θ) = u(1).

Proposition 2.2 (See [2]) Let X be a compact space and M : X ⇉ P1
E([0, 1]) be a

lower semicontinuous multifunction with closed and decomposable values. Then M has a
continuous selection.

For the proof of our main result, we also need the following fixed point theorem which
is the multivalued analogue of the Shaefer continuation principle. For more details for the
fixed point theory we refer the reader to [13].

Theorem 2.1 Let Y be a normed linear space and A : Y ⇉ Y be an upper semicontinuous
compact multivalued operator with compact convex values. Suppose that there exists an
R > 0 such that the a priori estimate

x ∈ λAx (0 < λ ≤ 1) ⇒ ‖x‖ ≤ R (2.9)

holds. Then A has a fixed point in the ball B(0, R).

3 Main result

Now, we are able to prove our main existence theorem.
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Theorem 3.1 Let E be a separable Banach space, F : [0, 1]×E×E×E ⇉ E be a convex
closed valued multifunction, Lebesgue-measurable on [0, 1] and upper semicontinuous on
E×E×E. Let H : [0, 1]×E×E×E ⇉ E be another multifunction with nonempty closed
values such that H is L([0, 1])⊗B(E)⊗B(E)⊗B(E)-measurable and lower semicontinuous
on E × E × E. Assume that, for i = 1, 2, there is some convex ‖ · ‖-compact valued, and
measurable multifunction Γi : [0, 1] ⇉ E which is Pettis uniformly integrable, such that
F (t, x, y, z) ⊂ Γ1(t) and H(t, x, y, z) ⊂ Γ2(t) for all (t, x, y, z) ∈ [0, 1] × E × E × E. Let
h : [0, 1] → [−r, 1], with t − r < h(t) < t, be a continuous mapping and ϕ ∈ CE([−r, 0])
with ϕ(0) = 0. Then the boundary value problem (Pr) has at least one solution in X :=
CE([−r, 1]) ∩ W

2,1
P,E([0, 1]).

Proof. Step 1. Taking co({0} ∪ Γi(t)) if necessary, we may suppose that 0 ∈ Γi(t)
for all t ∈ [0, 1] and i = 1, 2.

For t ∈ [0, 1], let Γ(t) = Γ1(t) + Γ2(t), and observe that the multifunction Γ inherits
all the properties of Γ1 and Γ2, that is, Γ is convex ‖ · ‖-compact valued, and measurable
multifunction, further, it is Pettis uniformly integrable.

Let us consider the differential inclusion










ü(t) ∈ Γ(t), a.e. t ∈ [0, 1];

u(t) = ϕ(t), ∀t ∈ [−r, 0];

u(0) = 0; u(θ) = u(1).

(3.1)

We wish to show that the X-solutions set XΓ of (3.1) is nonempty and convex compact
in the Banach space X endowed with the norm ‖.‖X.

Let us recall (see [10]) that the set SPe
Γ of all Pettis integrable selections of Γ is

nonempty, convex and sequentially compact for the topology of pointwise convergence
on L∞

R
⊗ E′ and that the multivalued integral

∫ 1

0
Γ(t)dt =

{

∫ 1

0
f(t)dt; f ∈ SPe

Γ

}

is convex and norm compact in E.
In view of Lemma 2.1 and Proposition 2.2, the solutions set XΓ of (3.1) is characterized

by

XΓ = {u ∈ X : u = ϕ on [−r, 0] and u(t) =

∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1]; f ∈ SPe

Γ }.
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Clearly XΓ is convex. Furthermore, for all u ∈ XΓ there is f ∈ SPe
Γ such that for t, t′ ∈ [0, 1]

‖u(t) − u(t′)‖ = sup
x′∈B

E′

|〈x′, u(t) − u(t′)〉|

= sup
x′∈B

E′

|〈x′,

∫ 1

0
G(t, s)f(s)ds −

∫ 1

0
G(t′, s)f(s)ds〉|

≤ sup
x′∈B

E′

∫ 1

0
|G(t, s) − G(t′, s)||〈x′, f(s)〉|ds

≤ sup
x′∈B

E′

∫ 1

0
|G(t, s) − G(t′, s)||δ∗(x′,Γ(s))|ds

and by Lemma 2.1,

‖u̇(t) − u̇(t′)‖ ≤ sup
x′∈B

E′

∫ 1

0
|
∂G

∂t
(t, s) −

∂G

∂t
(t′, s)||δ∗(x′,Γ(s))|ds.

The function G is continuous on the compact set [0, 1]× [0, 1], so it is uniformly continuous
there. In addition, the set {|δ∗(x′,Γ(.))| : x′ ∈ BE′} is uniformly integrable in L1

R
([0, 1]).

Then, the right-hand side of the above inequalities tends to 0 as t → t′. We conclude that
the sets XΓ and {u̇ : u ∈ XΓ} are equicontinuous in CE([0, 1]). Since ϕ ∈ CE([−r, 0])
we get the equicontinuity of XΓ in X. On the other hand, for each t ∈ [−r, 1] and each
τ ∈ [0, 1], the sets XΓ(t) = {u(t) : u ∈ XΓ} and {u̇f (τ) : u ∈ XΓ} are relatively

compact in E because they are included in the norm compact sets

∫ 1

0
G(t, s)Γ(s)ds and

∫ 1

0

∂G

∂t
(t, s)Γ(s)ds respectively. The Ascoli-Arzelà theorem yields that XΓ is relatively

compact in X with respect to ‖.‖X. We claim that XΓ is closed in (X, ‖.‖X). Let (un) be
a sequence in XΓ converging to ξ ∈ X with respect to ‖.‖X. Then, for each n, there exists
fn ∈ SPe

Γ such that

un(t) =

∫ 1

0
G(t, s)fn(s)ds, ∀t ∈ [0, 1]

and un(t) = ϕ(t) for all t ∈ [−r, 0]. As SPe
Γ is sequentially compact for the topology of

pointwize convergence on L∞
R

⊗ E′, we extract from (fn) a subsequence that we do not
relabel and which converges σ(P1

E ,L∞
R

⊗ E′) to a mapping f ∈ SPe
Γ . In particular, for

each x′ ∈ E′ and for every t ∈ [0, 1], we have

lim
n→∞

〈x′,

∫ 1

0
G(t, s)fn(s)ds〉 = lim

n→∞

∫ 1

0
〈G(t, s)x′, fn(s)〉ds

=

∫ 1

0
〈G(t, s)x′, f(s)〉ds

= 〈x′,

∫ 1

0
G(t, s)f(s)ds〉,

(3.2)
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and

lim
n→∞

〈x′,

∫ 1

0

∂G

∂t
(t, s)fn(s)ds〉 = lim

n→∞

∫ 1

0
〈
∂G

∂t
(t, s)x′, fn(s)〉ds

=

∫ 1

0
〈
∂G

∂t
(t, s)x′, f(s)〉ds

= 〈x′,

∫ 1

0

∂G

∂t
(t, s)f(s)ds〉.

(3.3)

As the set valued integral

∫ 1

0
G(t, s)Γ(s)ds and

∫ 1

0

∂G

∂t
(t, s)Γ(s)ds (t ∈ [0, 1]) are norm-

compacts, (3.2) and (3.3) show that the sequences (un(·)) = (

∫ 1

0
G(., s)fn(s)ds) and

(u̇n(·)) = (

∫ 1

0

∂G

∂t
(., s)fn(s)ds) converge pointwise to u(.) and u̇(.) respectively, for E

endowed with the strong topology, where

u(t) =

∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1],

u̇(t) =

∫ 1

0

∂G

∂t
(t, s)f(s)ds, ∀t ∈ [0, 1],

and u(t) = ϕ(t) for all t ∈ [−r, 0]. Thus we get ξ = u. This shows the compactness of XΓ

in X.
Step 2. Let Φ : XΓ ⇉ P1

E([0, 1]) be the multifunction given by

Φ(u) = {v ∈ P1
E([0, 1]) : v(t) ∈ H(t, u(t), u(h(t)), u̇(t)), a.e. on [0, 1]}.

We will prove that, for XΓ endowed with the norm ‖ · ‖X, the multifunction Φ admits
a continuous selection. It is clear that Φ has nonempty closed decomposable values.
According to Proposition 2.2, it sufficient to prove that Φ is lower semicontinuous. Let
u0 ∈ XΓ, v0 ∈ Φ(u0) and let (un) be a sequence in XΓ converging to u0 in (X, ‖ · ‖X).
Since u0 ∈ XΓ, there exists f0 ∈ SPe

Γ such that

u0(t) =

∫ 1

0
G(t, s)f0(s)ds, ∀t ∈ [0, 1]

and u0(t) = ϕ(t) for all t ∈ [−r, 0], and since (un) ⊂ XΓ, for each n, there exists fn ∈ SPe
Γ

such that

un(t) =

∫ 1

0
G(t, s)fn(s)ds, ∀t ∈ [0, 1]

and un(t) = ϕ(t) for all t ∈ [−r, 0].
For any n ∈ N, H(., un(.), un(h(.)), u̇n(.)) is measurable with nonempty closed values,

so according to [10, Theorem III. 41], the multifunction Λn defined from [0, 1] into E by

Λn(t) = {w ∈ H(t, un(t), un(h(t)), u̇n(t)) : ‖w−v0(t)‖ = d(v0(t),H(t, un(t), un(h(t)), u̇n(t)))},
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is also measurable with closed values, and since H(., un(.), un(h(.)), u̇n(.)) has compact
values, Λn has nonempty values. In view of the existence theorem of measurable selections
(see [10]), there is a measurable mapping vn : [0, 1] → E such that vn(t) ∈ Λn(t), for all
t ∈ [0, 1]. This yields vn(t) ∈ H(t, un(t), un(h(t)), u̇n(t)) and

lim
n→∞

‖vn(t) − v0(t)‖ = lim
n→∞

d(v0(t),H(t, un(t), un(h(t)), u̇n(t)))

≤ lim
n→∞

e(H(t, u0(t), u0(h(t)), u̇0(t)),H(t, un(t), un(h(t)), u̇n(t)))

= 0,

the last equality follows from the fact that H is lower semicontinuous with compact values
and hence it is h-lower semicontinuous. This shows that (vn) converges pointwise to v0

and since H(t, x, y, z) ⊂ Γ2(t) for all (t, x, y, z) ∈ [0, 1] × E × E × E, the convergence also
holds strongly in P1

E([1, 0]). Indeed,

lim
n→∞

‖vn − v0‖Pe = lim
n→∞

sup
x′∈B

E′

∫ 1

0
|〈x′, vn(t) − v0(t)〉|dt

= lim
n→∞

sup
x′∈B

E′

∫ 1

0
|〈x′, vn(t)〉 − 〈x′, v0(t)〉|dt.

As vn(t) ∈ Γ2(t) for all n ∈ N and as Γ2 is scalarly uniformly integrable and hence the set
{〈x′, vn(.)〉 : ‖x′‖ ≤ 1} is uniformly integrable in L1

E([0, 1]), we get

lim
n→∞

‖vn − v0‖Pe = sup
x′∈B

E′

∫ 1

0
lim

n→∞
|〈x′, vn(t)〉 − 〈x′, v0(t)〉|dt = 0.

Therefore Φ is lower semicontinous. An application of Proposition 2.2 implies that, for
XΓ endowed with the norm ‖ ·‖X, there exists a continuous mapping K : XΓ → P1

E([0, 1])
such that K(u) ∈ Φ(u) for all u ∈ XΓ, or equivalently, for each u ∈ XΓ the inclusion
K(u)(t) ∈ H(t, u(t), u(h(t)), u̇(t)) holds for a.e. t ∈ [0, 1].

Step 3. We transform the problem

(P)











ü(t) ∈ F (t, u(t), u(h(t)), u̇(t)) + K(u)(t), a.e. t ∈ [0, 1];

u(t) = ϕ(t), ∀t ∈ [−r, 0];

u(0) = 0; u(θ) = u(1),

into a fixed point inclusion in the Banach space XΓ. By Lemma 2.1 and Proposition 2.2,
the existence of solutions of (P) is equivalent to the problem of finding u ∈ XΓ such that







u(t) ∈

∫ 1

0
G(t, s)(F (s, u(s), u(h(s)), u̇(s)) + K(u)(s))ds, ∀t ∈ [0, 1];

u(t) = ϕ(t), ∀t ∈ [−r, 0].

(3.4)

Define the operator A on XΓ by
Au = {v ∈ X/ v = ϕ on [−r, 0] and v(t) =

∫ 1
0 G(t, s)g(s)ds, ∀t ∈ [0, 1], g = f + K(u),

f ∈ SPe
F (u)} (3.5)
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where

SPe
F (u) = {ϑ ∈ P1

E([0, 1])/ ϑ(t) ∈ F (t, u(t), u(h(t)), u̇(t)), a.e.t ∈ [0, 1]}. (3.6)

Then, the integral inclusion (3.4) is equivalent to the operator inclusion

u(t) ∈ Au(t), ∀t ∈ [−r, 1]. (3.7)

Let us show that SPe
F has nonempty values. Indeed, for any Lebesgue measurable mappings

u,w : [0, 1] → E and v : [−r, 1] → E, there is a Lebesgue-measurable selection s ∈ SPe
Γ1

such
that s(t) ∈ F (t, u(t), v(h(t)), w(t)) a.e. Indeed, there exist sequences (un), (vn) and (wn)
of simple E-valued mappings which converge pointwise to u, v and w respectively, for E
endowed with the norm topology. Notice that the multifunctions F (., un(.), vn(h(.)), wn(.))
are Lebesgue-measurable. In view of the existence theorem of measurable selection (see
[10]), for each n, there is a Lebesgue-measurable selection sn of F (., un(.), vn(h(.)), wn(.)).
As sn(t) ∈ F (t, un(t), vn(h(t)), wn(t)) ⊂ Γ1(t), for all t ∈ [0, 1] and as SPe

Γ1
is sequentially

weakly compact in P1
E([0, 1]), by Eberlein-S̆mulian theorem, we may extract from (sn) a

subsequence (s′n) which converges σ(P1
E ,L∞

R
⊗ E′) to a mapping s ∈ SPe

Γ1
. That is, for

each x′ ∈ E′ and each ζ ∈ L∞
R

we have

lim
n→∞

〈ζ(·)x′, s′n(·)〉 = 〈ζ(·)x′, s(·)〉

or equivalently

lim
n→∞

∫ 1

0
〈ζ(t)x′, s′n(t)〉dt =

∫ 1

0
〈ζ(t)x′, s(t)〉dt,

i.e.,

lim
n→∞

∫ 1

0
ζ(t)〈x′, s′n(t)〉dt =

∫ 1

0
ζ(t)〈x′, s(t)〉dt.

This last equality shows that for each x′ ∈ E′, the sequence (〈x′, s′n(·)〉)n σ(L1
R
,L∞

R
)-

converges to 〈x′, s(·)〉. Let (e∗k)
k∈N

be a dense sequence for the Mackey topology τ(E′, E).
Let k ∈ N be fixed. Applying the Banach-Mazur’s theorem trick to (〈e∗k, s

′
n(.)〉)n provides

a sequence (zn), zn ∈ co{〈e∗k, s′m(.)〉 : m > n} such that (zn) converges pointwise a.e to
〈e∗k, s(.)〉. Using this fact and the pointwise convergence of the sequences (un), (vn) and
(wn), the upper semicontinuity of F(t, . , . , .) and the compacity of its values, it is not
difficult to check that s(t) ∈ F (t, u(t), v(h(t)), w(t)) a.e. Indeed, for almost every t ∈ [0, 1]
we have

〈e∗k, s(t)〉 ∈
⋂

n

co(
⋃

m≥n

〈e∗k, s
′
m(t)〉)

⊂
⋂

n

co(
⋃

m≥n

(e∗k ◦ F (t, um(t), vm(h(t)), wm(t))))

= co(lim sup
n→∞

(e∗k ◦ F (t, um(t), vm(h(t)), wm(t))))

= co(e∗k ◦ F (t, u(t), v(h(t)), w(t))) = (e∗k ◦ F (t, u(t), v(h(t)), w(t)))
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since F has closed convex values. This implies that s(t) ∈ F (t, u(t), v(h(t)), w(t)) a.e, and
then the operator A is well defined. Using Lemma 2.1 and the assumption ϕ(0) = 0, it is
clear that A has its values in XΓ.

Now, we will show that the multivalued operator A satisfy all the conditions of Theorem
2.1. Clearly Au is convex for each u ∈ XΓ. First, we prove that A has compact values
in XΓ. Since XΓ is compact, it suffices to see that A has closed values in XΓ. For each
u ∈ XΓ, let (vn) be a sequence in Au converging to v ∈ XΓ. Then by (3.5), for every n
there exists fn ∈ SPe

F (u) ⊂ SPe
Γ1

such that

vn(t) =

∫ 1

0
G(t, s)gn(s)ds, ∀t ∈ [0, 1],

where gn = fn + K(u) ∈ SPe
Γ and vn(t) = ϕ(t) for all t ∈ [−r, 0]. Since SPe

Γ1
is sequentially

σ(P1
E ,L∞

R
⊗E′)-compact, we may extract from (fn) a subsequence (that we do not relabel)

converging σ(P1
E ,L∞

R
⊗E′) to a mapping f ∈ SPe

Γ1
. Since F (t, ·, ·, ·) is upper semicontinuous

and has convex compact values, by repeating the arguments given above, we get f(t) ∈
F (t, u(t), u(h(t)), u̇(t)) a.e. t ∈ [0, 1]. Hence (gn) converges σ(P1

E ,L∞
R
⊗E′) to the mapping

g = f + K(u) ∈ SPe
Γ . In particular, for every x′ ∈ E′ and for every t ∈ [0, 1], we have

lim
n→∞

〈x′,

∫ 1

0
G(t, s)gn(s)ds〉 = lim

n→∞

∫ 1

0
〈G(t, s)x′, gn(s)〉ds

=

∫ 1

0
〈G(t, s)x′, g(s)〉ds

= 〈x′,

∫ 1

0
G(t, s)g(s)ds〉.

As the set-valued integral

∫ 1

0
G(t, s)Γ(s)ds (t ∈ [0, 1]) is norm compact the last equality

shows that the sequence (vn(.)) = (

∫ 1

0
G(·, s)gn(s)ds) converges pointwise to

∫ 1
0 G(., s)g(s)ds,

for E endowed with the strong topology. At this point, it is worth to mention that the

sequence (v̇n(.)) = (

∫ 1

0

∂G

∂t
(., s)gn(s)ds) converges pointwise to

∫ 1
0

∂G

∂t
(., s)g(s)ds, for E

endowed with the strong topology using as above, the weak convergence of (gn) and the

norm compactness of the set-valued integral

∫ 1

0

∂G

∂t
(t, s)Γ(s)ds. As (vn) converges in XΓ

to the mapping v, then

v(t) =

∫ 1

0
G(t, s)g(s)ds, ∀t ∈ [0, 1]

and v(t) = ϕ(t) for all t ∈ [−r, 0]. Since g = f + K(u) and f ∈ SPe
F (u), we get v ∈ A.

This says that Au is compact in XΓ.
Next, we show that A is a compact operator, that is, A maps bounded sets into

relatively compact sets in XΓ. Let S be a bounded set in XΓ. We have A(S) ⊂ XΓ. But
XΓ is compact in X, then A(S) is relatively compact in X and hence A is compact.
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Now, we show that the graph of A, gph(A) = {(u, v) ∈ XΓ × XΓ/ v ∈ Au} is closed.
Let (un, vn) be a sequence of gph(A) converging uniformly to (u, v) ∈ XΓ × XΓ with
respect to ‖ · ‖X. Since vn ∈ Aun, for each n, there exists fn ∈ SPe

F (un) ⊂ SPe
Γ1

such that

vn(t) =

∫ 1

0
G(t, s)gn(s)ds, ∀t ∈ [0, 1],

where gn = fn + K(un) and vn(t) = ϕ(t) for all t ∈ [−r, 0]. As SPe
Γ is sequentially com-

pact for the topology of pointwise convergence on L∞
R

⊗ E′, we may extract from (gn) a
subsequence (that we do note relabel) converging σ(P1

E ,L∞
R

⊗E′) to a mapping g ∈ SPe
Γ .

Observing that fn(t) = gn(t) − K(un)(t) ∈ F (t, un(t), un(h(t)), u̇n(t)). Since ‖un −
u‖X → 0 and F (t, ., ., .) is upper semicontinuous on E × E × E with convex compact
values, repeating the arguments given above, we conclude that f(t) = g(t) − K(u)(t) ∈
F (t, u(t), u(h(t)), u̇(t)). Equivalently, f ∈ SPe

F (u). On the other hand, it is not difficult to

see that the sequence (vn(.)) = (

∫ 1

0
G(., s)gn(s)ds) converges pointwise to

∫ 1

0
G(., s)g(s)ds

and that the sequence (v̇n(.)) = (

∫ 1

0

∂G

∂t
(., s)gn(s)ds) converges pointwise to

∫ 1

0

∂G

∂t
(., s)g(s)ds,

for E endowed with the strong topology. As (vn) converges to v in (XΓ, ‖ · ‖X) we get

v(t) =

∫ 1

0
G(t, s)g(s)ds, ∀t ∈ [0, 1],

where g = f + K(u) and v(t) = ϕ(t) for all t ∈ [−r, 0]. This shows that A has a closed
graph and hence it is an upper semicontinuous operator on XΓ.

Finally, we show that there exists an R > 0 such that the a priori estimate

u ∈ λAu (0 < λ ≤ 1) ⇒ ‖u‖ ≤ R

holds. We have
u ∈ λAu ⇔ there exists f ∈ SPe

F (u) ⊂ SPe
Γ1

such that






u(t) = λ

∫ 1

0
G(t, s)g(s)ds, ∀t ∈ [0, 1];

u(t) = λϕ(t), ∀t ∈ [−r, 0],
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where g = f + K(u) ∈ SPe
Γ . For each t ∈ [0, 1], using relation (2.5) and the assumption

over Γ, we have

‖u(t)‖ = sup
x′∈B

E′

|〈x′, u(t)〉|

= sup
x′∈B

E′

|〈x′,

∫ 1

0
G(t, s)g(s)ds〉|

= sup
x′∈B

E′

|

∫ 1

0
G(t, s)〈x′, g(s)〉ds|

≤ sup
x′∈B

E′

∫ 1

0
|G(t, s)||〈x′, g(s)〉|ds

≤ sup
x′∈B

E′

∫ 1

0
|δ∗(x′,Γ(s))|ds

and

‖u̇(t)‖ ≤ sup
x′∈B

E′

∫ 1

0
|
∂G

∂t
(t, s)||〈x′, g(s)〉|ds ≤ sup

x′∈B
E′

∫ 1

0
|δ∗(x′,Γ(s))|ds.

Since the set {|δ∗(x′,Γ(s))| : x′ ∈ BE′} is uniformly integrable in L1
R
([0, 1]), there exists a

function k ∈ L1
R
([0, 1]) such that, for all x′ ∈ BE′ and for all s ∈ [0, 1] we have

|δ∗(x′,Γ(s))| ≤ |k(s)|.

We get

‖u(t)‖ ≤

∫ 1

0
|k(s)|ds = ‖k‖

L1

R

and
‖u̇(t)‖ ≤ ‖k‖L1

R

.

On the other hand, for each t ∈ [−r, 0] we have

‖u(t)‖ = ‖λϕ(t)‖ ≤ ‖ϕ‖CE([−r,0]).

Taking the above inequalities into account, we obtain

‖u‖X ≤ max(‖k‖L1

R

, ‖ϕ‖CE([−r,0])) = R.

Hence by Theorem 2.1, we conclude that A has a fixed point u in the ball B(0, R),
what, in turn, means that this point is a solution in XΓ to the problem (P). That is,
ü(t) ∈ F (t, u(t), u(h(t)), u̇(t)) + K(u)(t), a.e. t ∈ [0, 1] and u(t) = ϕ(t) for all t ∈ [−r, 0].
Since K(u)(t) ∈ H(t, u(t), u(h(t)), u̇(t)), we get that u is a solution in XΓ to our boundary
value problem (Pr) and the proof of the theorem is complete. �
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E([0, 1]), Prépublication du Laboratoire de Mathématiques Pures et
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